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Kurzfassung

Während hochqualitative 3D-Scans leichter zugänglich werden, entstehen neue Heraus-
forderungen für die Verarbeitung der erzeugten Daten. 3D-Scanner erzeugen sehr große,
unstrukturierte Mengen von 3D-Punkten, sogenannte Punktwolken. Um diese Daten sinn-
voll weiterverwenden zu können, ist es notwendig die Oberfläche des gescannten Objekts
als 3D-Modell zu rekonstruieren. Dieses Problem heißt 3D-Oberflächenrekonstruktion.
Um mit dem Fortschritt der 3D-Scanning-Technologie mitzuhalten, ist es erforderlich,
sehr großen Punktwolken in akzeptabler Zeit verarbeiten zu können.

In dieser Bachelorarbeit konstruieren, implementieren und evaluieren wir einen parallelen,
verteilten Algorithmus zur Oberflächenrekonstruktion namens DistributedBallFilter,
der auf dem kürzlich entwickelten BallFilter-Algorithmus [Ohr22] basiert. Mithilfe
eines 3D-Gitters wird die Punktwolke in unabhängige Teile (sogenannte Tiles) unter-
teilt. Zur Sicherstellung der Korrektheit überlappen sich einzelne Tiles an den Rändern.
Die Tiles werden anschließend an p Prozesse verteilt. Die Tile-Prozess-Zuweisung wird
mithilfe von Longest-Processing-Time-First List Scheduling berechnet. Alle Prozesse
rekonstruieren gleichzeitig die Oberflächen in den ihnen zugewiesenen Tiles. Dann wer-
den die Einzelergebnisse in einem einzigen 3D-Modell zusammengeführt, welches die
rekonstruierte Oberfläche der gesamten Punktwolke enthält. Die asymptotische Laufzeit-
komplexität ist in O(n log n) im schlechtesten Fall und in O(n + n log n

p ) im besten Fall,
je nach Verteilung der Punkte in der Punktwolke.

Der Algorithmus wurde in C++ implementiert. Das Zerteilen des Inputs wird mithilfe
von CUDA auf einer GPU durchgeführt und wird in [Bru22] detailiert behandelt. Für
jedes Tile wird eine einzelne Datei erzeugt, die mithilfe eines verteilten Dateisystems
an die einzelnen Prozesse kommuniziert wird. MPI wird verwendet, um die Resultate
aller Prozesse an einen Prozess zu senden, welcher auch für die Zusammenführung der
Einzelergebnisse und die Ausgabe des 3D-Modells zuständig ist.

Wir haben unsere Implementation auf dem High-Performance-Computing-Cluster VSC3+
mithilfe einiger Datensätze evaluiert. Dazu zeigen wir einige Visualierungen der Lauf-
zeiten und analysieren das Verhalten der Laufzeit, wenn die Anzahl der Prozesse oder
der Input-Größe variiert wird. Wir konnten in unseren Tests eine Verbesserung der
Laufzeit von DistributedBallFilter gegenüber jener von BallFilter um einen
Faktor von ungefähr fünf, je nach Anzahl Prozesse und Input-Größe beobachten. Der
höchste beobachtete Speedup belief sich auf 5.89.
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Abstract

As the accessibility of high-quality 3D scans increases, processing the scanned data
becomes more challenging. 3D scanners obtain very large, unstructured sets of points,
so called point clouds. To be able to use the data in a meaningful way it is necessary
to reconstruct the surface of the scanned object from the point cloud, resulting in a 3D
model. This is called the problem of 3D surface reconstruction. Processing very large
point clouds (in a reasonable time) is necessary in order to keep up with ever increasing
scanning technology.

In this thesis, we construct, implement and evaluate a distributed surface reconstruction
algorithm called DistributedBallFilter. It is a distributed-memory parallel version
of the recently developed BallFilter algorithm [Ohr22]. Firstly, the input point cloud
is subdivided into chunks called tiles using a 3D grid. To ensure the correctness of the
results, tiles are slightly overlapping on their borders. After splitting the input, each tile
can be processed independently from each other. The tiles are assigned and distributed
to a number of p processes. The assignment of tiles to processes is calculated using
longest-processing-time-first list scheduling. Then all processes reconstruct the 3D surface
of all their assigned tiles in parallel. After all tiles are processed, the result is merged
back together into a single 3D model, containing the reconstructed surface of the entire
input point cloud. The asymptotic run time complexity is O(n log n) in the worst case
(same as BallFilter) and O(n + n log n

p ) in the best case, depending on the distribution
of points within the input data.

Furthermore, we implemented the algorithm in C++. The input splitting is run on a
GPU using CUDA and discussed thoroughly in its dedicated paper [Bru22]. For each
tile a single file is output, which is communicated to each process via a distributed file
system. The MPI standard is used for sending all local results to a single process, which
is also responsible for merging and outputting the final 3D model.

Finally we executed the algorithm on the VSC3+ cluster, a high-performance cluster
based in Vienna. It was run against several test data sets. We visualize the results and
analysed the behavior of the running time when scaling the number of processes as well
as the input size. In our tests, DistributedBallFilter managed to be up to around
five times faster than BallFilter depending on the number of nodes used and the input
size. The largest observed speedup was by a factor of 5.89 compared to BallFilter.
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CHAPTER 1
Introduction

In recent years, 3D scanning technology has become considerably easier to obtain and
use. As a consequence, more and more scanned data is made available as part of private
or public projects. One such project is Wien gibt Raum [Wie22]. Conducted by the
government of the City of Vienna, the project aims to increase efficiency and transparency
of the administration of public space as well as planning and approval of new projects.
For the project, over 100 terabytes of data was collected by vehicles, surveying the streets
of Vienna with 360° cameras and laser (LiDAR) scanners. Usually, the result of such
surveys is an unstructured set of 3D points, commonly called point cloud. While point
clouds can be viewed and manipulated, they only have limited use when it comes to
visualization. It is more intuitive to work with 3D models consisting of points, edges
and faces that represent real objects, rather than a floating set of points. Models can
easily be visualized, manipulated or used with other tools and algorithms. For example, a
model created from the Wien gibt Raum data could be used to visualize new construction
projects. Therefore, the challenge is to create a model from a point cloud that most
accurately represents the scanned object. In computer graphics, this problem is well
known as surface reconstruction.

Generally, the problem of 3D surface reconstruction is concerned with approximating
the boundary of an object given an unstructured set of points sampled on its surface.
Introducing noise and outliers, as they are present in most real-life scans, makes solving
this problem even more challenging. Large point clouds such as the one collected by
Wien gibt Raum require fast and scalable surface reconstruction algorithms so that a 3D
model can be calculated in reasonable time.

1.1 Related work

There are many algorithms for surface reconstruction on three-dimensional point sets.
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1. Introduction

(a) Input point cloud (b) Reconstructed 3D model

Figure 1.1: The problem of 3D surface reconstruction: From an unordered set of points
reconstruct the surface of the object the points were sampled from.

There are several approaches for surface reconstruction. Following You et al. [YLL+20],
we categorize the existing surface reconstruction algorithms based on their methodology
into interpolation, approximation and learning-based approaches. While soft-computing
approaches are mentioned separately by You et al., they will not be further explained as
they are not relevant to this work.

Interpolation approaches (also called combinatorial approaches) try to reconstruct the
surface that (exactly) goes through all sampled points. Usually they use the Delaunay
complex or the Voronoi diagram. Because DistributedBallFilter is an interpolation
approach (and also based on the Delaunay complex), we will explore this category in
more detail. Edelsbrunner and Mücke [EM94] utilized the Delaunay complex to extend
their previously introduced α-shapes to 3D. Unfortunately, α-shapes assume point clouds
to be uniformly sampled, making it difficult to apply to real-world data. Local estimation
of the Delaunay complex proved to be hard for non-uniformly sampled data sampling
and also introduced the need for complex corrections of inconsistencies caused by bad
estimation. Sculpting [Boi84], which greedily removes tetrahedra from the Delaunay
complex to obtain the shape, can only reconstruct objects without holes (genus zero)
while also suffering from artifacts at regions that are under-sampled. With the Crust
algorithm, Amenta et al. [ABE98, ACDL00] moved away from the assumption of uniform
sampling and introduced the notion of ϵ-sampling. The ϵ-sampling-condition relates
surface features with sampling density, requiring less points in regions with less features.
Crust’s output contains artifacts that require post-processing and performs poorly in
under-sampled regions. It inspired multiple variants, each improving reconstruction
quality for specific cases, most notably PowerCrust, which provided improvements in
noisy and under-sampled regions [ACK01].

Furthermore, there are some interpolation approaches that do not rely on the Delaunay
complex. For example, an approach by Hornung and Kobbelt [HK06] transforms the
reconstruction problem into the problem of finding a minimum graph cut. [Ede03] and
[GO08] use other types of simplicial complexes, the flow complex and the witness complex
respectively.
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1.2. BallMerge algorithm and limitations

Approximation approaches try to find the surface by finding a function that best agrees
with all sampled points, similar to curve fitting. Widely used in practice, Screened-
Poisson surface reconstruction [KH13] reduces the problem of surface reconstruction
to a Poisson problem that can be solved as a system of linear equations. It requires
knowledge of the surface normal for each sampled point.

Learning-based approaches facilitate some form of machine learning. Many learning-
based algorithms estimate surface normals of point clouds, as this is helpful or even
necessary for some interpolation/approximation approaches. There are also some al-
gorithms in this category that directly reconstruct surfaces. One recent example is
Points2Surf [EGO+20], which managed to reduce the reconstruction error by 30%
compared to ScreenedPoisson.

1.2 BallMerge algorithm and limitations
Recently, Ohrhallinger [Ohr22] developed a new Delaunay-based surface reconstruction
algorithm called BallMerge. After calculating the Delaunay complex, the resulting
tetrahedra are grouped based on the overlap of their circumspheres. The reconstructed
object is the largest group of tetrahedra. BallMerge drastically improved upon the
required ϵ-sampling condition thus requiring less dense sampling. It is relatively simple
and remains robust against noise and outliers while also producing a watertight surface.

A variant of BallMerge called BallFilter [Ohr22] can reconstruct open surfaces and
has been shown to work well with real-life scan data. It behaves similar to BallMerge
in terms of run times and memory requirements. Empirically, BallMerge had a
considerably lower run time than other algorithms such as PowerCrust [ACK01],
ScreenedPoisson [KH13] and Points2Surf [EGO+20]. Its memory consumption was
below all but ScreenedPoisson.

While BallMerge and BallFilter look very promising, there are still limitations
to them. By design, they are serial algorithms and therefore limited by the physical
capabilities of a single machine. Despite their good theoretical bounds, practical run
times and memory requirements, this effectively limits the size of data sets they can
process in reasonable time.

1.3 Distributed approach
In this paper, we address these limitations from a parallel computing perspective by
introducing a distributed-memory parallel version of BallFilter. DistributedBall-
Filter first subdivides the input into a three-dimensional grid with overlapping cells.
Then the original BallFilter algorithm is run on each grid cell separately. Finally, all
results are collected and merged together to create the final result.

This removes the memory restriction imposed by using a single machine. Moreover,
it enables us to scale the input size while still maintaining acceptable run times. We

3



1. Introduction

aim at utilizing parallel infrastructure, as is present in state-of-the-art high-performance
computing (commonly abbreviated to HPC) clusters, to execute BallFilter on much
larger data sets than previously possible. While doing so, we evaluate its performance
and scaling behavior from a parallel computing point of view and compare it against the
original algorithm. Specifically, DistributedBallFilter will be tested and run on the
VSC-3+ cluster [Clu22].

4



CHAPTER 2
Theory

For designing a distributed-memory parallel version of BallFilter, it is necessary
to understand its theoretical foundation as well the algorithm and its properties itself.
Therefore we will be revisiting the basics of the Delaunay complex, a geometric structure
constructed from the input point cloud. Then we will explain in detail how the BallFil-
ter algorithm processes the Delaunay complex of the input point set to reconstruct the
surface. As it will be needed for analysing and evaluating our parallel algorithm, we will
be recalling fundamental terminology for parallel performance such as the notion of speed
up. Further we will explain the aspects of the distributed-memory parallel computing
model and communication.

2.1 Delaunay complex
Many surface reconstruction algorithms are based on the Delaunay complex (commonly
referred to as Delaunay triangulation). In particular, they operate by examining the
tetrahedrons obtained from calculating the Delaunay complex for the input point cloud.
The challenge then becomes finding the subset (called subcomplex) of the Delaunay
complex that reconstructs the original object closest.

In literature, there are two prevalent ways of defining the Delaunay complex. Firstly,
it can be defined as a dual graph to the Voronoi diagram of a point set. Secondly, it
can be defined as a simplicial complex, using convex hulls. We will be using the second
definition as it more clearly conveys the structure as well as provides us with common
terminology used with Delaunay-based surface reconstruction.

The Delaunay complex is a so called simplicial complex. A simplicial complex is a set of
simplices. A n-simplex is the convex hull of a set of n + 1 points. A 0-simplex is called
vertex and contains only a single point. A 1-simplex is called edge and consists of two
points as well as all points on a (straight) line segment connecting them. Analogous, a

5



2. Theory

2-simplex is a triangle and a 3-simplex is a tetrahedron. A face of a simplex is the convex
hull of a subset of the points the simplex was created from. For example, a 2-simplex
(triangle) is the convex hull of three points. The convex hull of any subset of these three
points is a face of that simplex (as well as a simplex itself).

The Delaunay complex of a three-dimensional point set S consists of (non-overlapping)
tetrahedrons as well as all of their faces. Thus it contains 0-, 1-, 2- and 3-simplices.
These tetrahedrons must be constructed from points taken from S and cover the entire
convex hull of S. Furthermore they must fulfill the empty-sphere property (also called
Delaunay property). It states that the circumsphere of each tetrahedron, that is, the
sphere touching all of its vertices, must not contain any (other) vertices. For every set of
points the Delaunay complex can be calculated in O(n log n) time [Lea92].

2.2 BallMerge reconstruction method
The BallMerge reconstruction method starts by calculating the Delaunay complex of
the input point cloud and operates on the resulting tetrahedrons. It is based on the
observation, that the circumspheres of tetrahedrons (in literature often called medial balls)
are not overlapping along the boundary between interior and exterior of an object. Object
surfaces can therefore be found by dividing the tetrahedrons into groups of interior and
exterior. Formally, the overlap between the medial balls of two neighboring tetrahedrons
is quantified by the intersection ratio, defined as follows:

ir = max(r0 + r1 − d

r0
,
r1 + r0 − d

r1
)

where r0 and r1 are the radii of the medial balls of the tetrahedrons and d is the distance
between their circumcenters. Also it holds that 0 ≤ ir ≤ 2, higher values meaning greater
overlap [Ohr22].

The tetrahedrons are now grouped, given a threshold δ. Two neighboring tetrahedrons
are considered δ-merged if their intersection ratio is less than δ or if there is another
tetrahedron that is δ-merged with both of them. Applying this relation creates a partition
of the tetrahedron set. Each set of the partition is called δ-merged component and the
reconstructed surface is the boundary of the largest component.

Note that BallMerge always reconstructs closed, watertight surfaces. However, most
real-life scans are open surfaces, like for example aerial laser scans. Therefore, Ohrhallinger
formulated a variant of BallMerge called BallFilter [Ohr22]. BallFilter directly
reconstructs the boundaries between all δ-merged components by including triangles
when their neighboring tetrahedrons fulfill ir > δ. Triangles having one or more edges
longer than a certain fraction 1

tlen of the overall bounding box of the point cloud are
excluded as well. For most real-world applications, tlen = 200 is recommended.

Both, BallMerge and BallFilter only need a single traversal of the Delaunay complex.
As checking the intersection ratio and edge length can be done in O(1) time, the entire

6



2.3. Distributed-memory parallel computing

traversal takes O(n). The reconstruction is hence dominated by calculating the Delaunay
complex, taking O(n log n).
Our approach involves splitting the input point cloud along a 3D grid. Even for point
clouds sampled from closed surfaces, the resulting grid cells will contain samplings of
open surface. Because of this observation and the fact, that BallFilter works better
with real-life data, we will be using the BallFilter variant exclusively.

2.3 Distributed-memory parallel computing
We will be reasoning about the distributed version of BallFilter from the perspective
of parallel computing. Therefore we will revisit some of the terminology and concepts
used.

2.3.1 Assumptions and model

In the distributed-memory parallel computing model there are a number of p processes
that are connected via a communication network (sometimes called interconnect). Each
process can only access its own local memory. Processes can only interact with each
other by communicating over the communication network. There are several paradigms,
standards and frameworks providing means for communication. The most used and
widely by HPC clusters widely supportedstandard is MPI, the Message Passing Interface.
It utilizes the programming paradigm of message passing. In this paradigm, processes
communicate with each other by explicitly invoking send and receive operations for
exchanging messages [SGMHS17]. Costs for such operations are determined by the
concrete topology of the communication network.

2.3.2 Terminology

Let T ∗(n) denote the execution time of the best known sequential algorithm for a problem.
Furthermore, let T (p, n) denote the execution time of some parallel algorithm solving
the same problem, where p is the number of processes used. The absolute speedup, often
simply called speedup, relates these two and is defined as

Sabs(p, n) = T ∗(n)
T (p, n) .

It measures the improvement of parallel algorithms (solving the same problems) over a
baseline sequential one. The best (absolute) speedup is called linear speedup and is p.
Often the challenge is determining the number of processes, for which linear speedup can
be achieved as this is the most efficient configuration. Similarly, relative speedup is given
by

Srel(p, n) = T (1, n)
T (p, n) .

7



2. Theory

It relates the execution time of a parallel algorithm executed with an arbitrary number
processes against the execution time of the same algorithm when executed with just a
single process. Both notions, absolute and relative speedup can be used formally (with
asymptotic run times) as well as empirically (with measured run times) [RR10].
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CHAPTER 3
Method

The idea of DistributedBallFilter is to simply split the point cloud into chunks
along a 3D grid and run the original BallFilter algorithm on each chunk in parallel.
The overall result is the union of all chunk results.

The essential steps performed by BallFilter are calculating the Delaunay complex
of the entire point cloud and filtering the triangles of neighboring tetrahedrons by the
δ-merged condition. DistributedBallFilter will need the additional steps of splitting
the input, distributing the chunks as well as merging the outputs of BallFilter for
each chunk back together to create the final result.

In designing DistributedBallFilter our goal is to be able to carry out as much work
as possible in parallel while also maintaining clear interfaces between each step. In the
following, we will discuss each step as well as our approach to parallization and highlight
important theoretical considerations.

3.1 Splitting into overlapping tiles

The approach for input subdivision was developed by Brunner and is thoroughly explained
in their dedicated work [Bru22]. Therefore we will only explain the most important
aspects.

Splitting the input into independent parts is necessary to enable parallelism. We will be
splitting the point set along a regular 3D grid into so-called tiles. Each tile is a set of
points containing all points within a grid cell as well as points within a certain padding
around the cell. The padding is necessary to ensure the correctness of the result. Tiles
can be processed by the original BallFilter independently from each other and thus
may be processed in parallel.

9



3. Method

Let p be the input point set and s = x × y × z the number of cells in the grid and x, y
and z be number of grid cells along each dimension. The result of the splitting step is a
set of tiles with the following properties:

Tp = Split(p) = {t0, t1, t2, ..., ts−1} (3.1)⋃
Tp =

⋃
t∈Split(p)

t = p. (3.2)

The union of all elements of the set of all tiles Tp must be equal to the original input
point cloud.

3.1.1 Correctness

The union of the Delaunay complex of all grid cells (without padding) is not equal to the
Delaunay complex of the entire point cloud as there cannot be edges between vertices in
neighboring cells. Visually, it leads to cuts along the splitting grid in the resulting model.
This problem is taken care of by adding the padding. Each tile contains points within a
grid cell as well as within a certain padding around the grid cell. Therefore, the set of
tiles is not a partition of the input, but a set of overlapping subsets.

The condition for correctness of the result of DistributedBallFilter may be expressed
as

⋃
t∈Tp

BF(t) = BF(p)

where BF(p) is the result of executing BallFilter on a set of points p.

Correctness can be guaranteed by choosing the padding as

padding = 2l√
(4δ − δ2)

in all directions (to take into account all the triangles that could be grouped in the
current simplices) and another padding of l in the positive direction (such that we do not
miss any triangles with length of at most l), where l = 1

2000diagonal. diagonal is referring
to the diagonal of the axis-aligned bounding box that contains all points of the input
point cloud. The proof for this correctness guarantee is outside of the scope of this paper.

For detailed reasoning about the padding size and its relation to correctness, please refer
to [Bru22].

10



3.2. Work distribution

3.1.2 Tile membership and output size

To determine the tiles a point is a member of (tile membership), a single test against
the 3D grid is needed and eight tests (one for each side) against the padding. Although
there may be more optimal ways of doing this, it shows the theoretical bound of O(1) for
determining tile membership. Therefore, calculating the tile memberships of all points of
a point set of size n can be done in O(n).

The padding leads to the duplication of some points of the input point set. The number
of points in all tiles n′ = |

⋃
Tp| is dependent on the chosen padding. In particular, the

maximum number of tiles that may be overlapping each other dictates the factor of
duplication. For example, let us assume the padding is very large. There may be regions,
where all tiles overlap. As all points might be in these regions, each point might be
contained in every tile. Thus their total size would be n′ ≤ sn, s being the number of
cells in the grid. Another example would assume, the padding is rather small, covering
only less than half of the neighboring cells. This way, each tile only overlaps directly
neighboring tiles. The maximum area of overlap is around the corners of each tile, where
eight tiles overlap. A single point can therefore be in up to eight tiles, creating an upper
bound of n′ ≤ 8n.

For the sake of this work, we will assume the total number of points after splitting is an
unknown, constant factor c of the number of points in the original point set and thus

n′ = cn ∈ O(n).

3.2 Work distribution

The next step is to assign the independent chunks of work, the tiles, to a fixed number of
p processes (commonly referred to as machines or nodes) and to communicate the tiles
to those processes. We assume all processes are capable of performing the same amount
of work in the same time (assumption of identical machines). The total running time is
the running time of the slowest process. There is no assumption about the distribution
of the points, the tiles might not be balanced. There may be significant differences in the
number of points between tiles. The challenge is to assign tiles to processes in such a
way that the total running time is minimized. This problem is well known and studied
and called Load balancing and it is a type of Scheduling problem [KT06].

Using the terminology of load balancing, we call an execution of BallFilter for a single
tile a job. Each job has a specific execution time. These execution times can be estimated
by the number of points contained within the tile corresponding to the job. Therefore,
balancing out the number of vertices across all processes is equivalent to balancing out
load.

The problem of calculating an optimal assignment of jobs to processes is NP-hard. While
finding exact solutions is computationally complex, there are several fast algorithms
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for approximating an optimal solution. One simple approximation algorithm is called
list-scheduling. The list-scheduling algorithm keeps track of the sum of the execution
times of all jobs that have been assigned to each process. In every step it assigns an
unassigned job (in arbitrary order) to the process that currently has the lowest total
execution time. This procedure is repeated until all jobs are assigned. Using a priority
queue, list-scheduling can be done in O(s log p) (s being the number of jobs/tiles and p
the number of processes) and was proven to be a 2-approximation of the load-scheduling
problem, i.e. running the job schedule created by list-scheduling takes at most twice as
long as the optimal schedule [KT06]. This bound can be drastically improved to 4/3
by pre-ordering the jobs by their execution time in descending order before assigning
them. This is referred to as the longest-processing-time-first (LPT) rule [Xia04]. Sorting
the jobs takes O(s log s) for a number of s jobs. Once sorted, assigning the jobs, takes
O(s log p) for s jobs and p processes. The number of processes cannot exceed the number
of jobs as otherwise there would be unnecessary idle processes. Therefore s ≥ p holds and
implies s log s ≥ s log p. Consequently, the total running time for LPT list-scheduling is
in O(s log s).

We are using this method because it provides a good compromise between run time
as well as theoretical bound for the quality of the solution. The number of tiles and
processes will remain relatively small p ≤ s ≤ 64 for our evaluation. Calculating the
assignment will not be done in parallel, since its running time is negligible compared to
the other steps. While it may benefit the overall running time to employ parallelism
for this step, implementing it is not in the scope of this paper. To avoid the cost of
communication, each process computes the complete assignment for itself and picks out
its own assigned jobs (tiles) for processing.

3.3 Processing tiles
Now each process executes BallFilter on every tile it was assigned. The result of
BallFilter is a set of triangles, represented by the indices of the vertices of the original
point cloud.

As already discussed, BallFilter has a run time bounded by O(n log n) for n points.
After work distribution each process has a set of local tiles. The run time of a single
process is the sum of the run times of BallFilter for all tiles LT assigned to this
process, thus

O(
∑

ti∈LT
|ti| log |ti|).

The term with the largest tile size dominates this sum, so the largest tile of each process
dictates its run time. The overall run time is determined by the slowest processes. The
slowest process is the one with the largest tile out of all process-local largest tiles, thus
the largest tile out of all tiles. Therefore the overall bound can be expressed as
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3.3. Processing tiles

O(|ti| log |ti|),

where for all tj ∈ T : |ti| ≥ |tj |.

This reveals one important property of DistributedBallFilter: its run time is entirely
dependent on the distribution of points within the tiles, which itself depends on the
distribution in the point cloud, the chosen grid and padding.

In the best case, the optimal job assignment is perfectly balanced, meaning every process
is assigned exactly n′

p = cn
p points. Note that n′ is the number of points including

duplicates after splitting the initial point cloud. Because the largest tile has to be
assigned to some process and we assumed an optimal schedule where each process has cn

p
points (in one or more tiles), for the largest tile |ti| ≤ cn

p holds. This directly implies a
run time bound of

4
3 |ti| log |ti| ≤ 4

3
cn

p
log cn

p

= O(n

p
(log c + log n − log p))

= O(n

p
+ n

p
log n − n

p
log p)))

= O(n log n

p
)

for the entire schedule.

In the worst case, the optimal solution to the load balancing problem assigns almost all
points to a single process. This may happen when the tile sizes are extreme unbalanced
and there are not enough tiles to compensate for this, e.g. if two tiles with sizes cn − 1
and 1 should be assigned to two processes, then the optimal schedule would assign one
tile to each processes. As the largest tile may be of size cn, the run time of the slowest
process and thus the whole schedule would be

|ti| log |ti| ≤ cn log cn

= O(n(log c + log n))
= O(n + n log n)
= O(n log n)

which is (asymptotically) equal to running BallFilter on the original point cloud. Due
to duplicated points and communication overhead, the actual run times of Distribut-
edBallFilter are expected to be higher than BallFilter in this case. However, such
cases may be mitigated most of the time by choosing good parameters for input splitting.
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3.4 Merging results and output
Upon finishing executing BallFilter on an assigned tile, the result is added locally to
the set of all locally computed triangles. Subsequently, each process sends all triangles
computed from their assigned tiles to a single process, which unions all received sets and
outputs the final model.

As already mentioned, splitting the input leads to duplicate vertices within regions
where multiple tiles overlap. When we take the union of the sets of triangles resulting
from applying BallFilter to the tiles separately there may also be duplicate triangles
because of those duplicate vertices. Removal of those triangles is possible as a simple
post-processing step. However, they do not lead to artifacts and the number of duplicate
triangles in the final result is relatively low. Thus, for now we deem it unnecessary to
remove them.

3.5 Summary
To summarize, DistributedBallFilter performs the following steps when run on a
set of n points. Note that the point duplication caused by tile overlap is assumed to be a
constant factor as discussed in 3.1.

1. Split the input point cloud into tiles in O(n), n number of sampled points

2. Calculate schedule in O(|T | log |T |) where T is the set of tiles.

3. Perform BallFilter in O(|ti| log |ti|), where ti is the largest tile.
Worst case O(n log n), best case O(n log n

p ), where p is number of processes.

4. Merge results from nodes in O(n).

The overall asymptotic run time complexity is the sum of the complexities of the longest
path in the DAG, that is O(n + |T | log |T | + |ti| log |ti| + n). This is dominated by
O(n + |ti| log |ti|) which in the worst case is O(n + n log n) = O(n + n log n) and in the
best case O(n + n log n

p ). Note, that the coefficient of n is expected to be very low, as
splitting is done on the GPU and merging itself is a very simple operation.
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Split

LPT list-scheduling

BallFilter2BallFilter1 ... BallFilterp

Merge

Figure 3.1: DAG of tasks performed in DistributedBallFilter
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CHAPTER 4
Implementation

In this chapter we explain how the algorithm was implemented in software. First
we discuss what technology was used and why. Then we explain how the existing
implementation of BallFilter was adapted to achieve distributed-memory parallelism.

4.1 Technology

The most common framework for implementing distributed-memory parallelism in high-
performance computing is the Message Passing Interface (MPI) [Mes21]. MPI is a
standard that defines a large set of operations enabling processes running on different
nodes of the cluster to communicate with each other via explicit function calls. We use
C++ with the open source MPI implementation OpenMPI for communication [Pro22].
Only the operations for sending and receiving single message, MPI_Send and MPI_Recv
are needed.

The splitting step of DistributedBallFilter involves a large number of simple
operations on each points of the input point cloud. We already mentioned that the
splitting step will not be distributed. Instead we implement this step using CUDA, to
utilize the many cores of a graphics card. CUDA is a programming interface for NVIDIA
GPUs, allowing code to be executed directly on the GPU (thus enabling large scale
shared-memory parallelism) [NVI22].

We will be reusing parts of the original implementation of BallFilter as developed
by Ohrhallinger [Ohr22]. This implementation uses the CGAL library. CGAL is a
header-only C++ library that provides an extensive collection of data structures and
algorithms for various mathematical problems [The22]. We will be using its shared-
memory implementation for calculating the Delaunay complex of a given set of points.
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4. Implementation

The VSC-3+ cluster is managed by the SLURM cluster manager. It handles resource
allocation and job queuing/scheduling on the cluster [Sch21]. We will use it to run
DistributedBallFilter on a varying number of nodes to analyse its scaling behavior.

The VSC cluster also utilizes a high-performance distributed file system called BeeGFS.
It allows multiple nodes to access a shared file-system in parallel and provides fast read
and write performance. We will be using BeeGFS for communicating the tiles to the
processes they were assigned to.

4.2 Necessary changes to BallFilter implementation
Splitting the input point cloud and performing surface reconstruction are independent
of each other. This independence is reflected by implementing both processing steps in
separate executables. The representation of tiles as files provides a common interface
for splitting output and surface reconstruction input. This way, both parts may be
swapped out with different implementations independently and it is easily possible to
add pre-processing steps on a per-tile basis.

4.2.1 Splitting

The executable responsible for splitting the input takes the point cloud as well as the
number of cells along each dimension as parameters. It outputs a set of files, each of
which represents a single tile (Tile file), which contains a set of points. Each tile file
is identified by an unique ID that corresponds to the tiles position in the 3D grid and
is named accordingly. The tile files are written to the shared file system thus making
all tiles available to all nodes. The implementation of the splitting step using CUDA
is explored in [Bru22]. We will instead focus on performing surface reconstruction in
parallel.

4.2.2 Distributed-memory parallel execution of BallFilter

The executable for surface reconstruction takes a set of tile files as input. Every process
has access to all files via the distributed file system. Computing the schedule on a single
node requires communicating the IDs of the assigned tiles to each process. Instead, the
communication overhead is saved by letting each process compute the schedule itself and
then read the tiles files it needs from the distributed file system. Also one node with the
lowest load (according to the calculated schedule) is recognized as the root node. This
node will be responsible for merging and writing the final result.

Then every node runs the original BallFilter implementation on the assigned tiles.
Calculating the Delaunay complex is the bottleneck of BallFilter, and thus benefits
most from (shared-memory) parallelism. The original BallFilter already uses a shared-
memory parallel implementation of the Delaunay complex calculation supplied by CGAL.
The filtering based on the δ-merged property on the Delaunay simplices is done in serial
utilizing just a single core. Implementing this using shared-memory parallelism, while
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4.2. Necessary changes to BallFilter implementation

beneficial to the running time, is not in the scope of this paper. The resulting sets
of triangles, represented by indices of vertices in the input point cloud, are merged in
memory.

When the root node is done with reconstructing the surface within all its assigned tiles,
it writes the vertices of the input point cloud to the output file as well as the locally
calculated triangles. Upon completion of all of their assigned tiles, each non-root node
sends its local results to the root node, which immediately writes them to the output file.
After the root node received results from all other nodes, DistributedBallFilter is
completed and the output file contains a 3D model of the reconstructed surface from the
original input point cloud.
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CHAPTER 5
Results and Evaluation

In this chapter, we will discuss the results of our implementation of DistributedBall-
Filter on specific data sets and parameter combinations. First we will give an overview
of the hardware environment the algorithm is run in as well as explain the data sets
and parameter combinations selected for testing. Moreover we will list and visualize the
running times for specific data sets and parameter combinations and reason about the
behavior when scaling the number of processes p or the input size n. Furthermore we
will draw comparisons to the shared-memory implementation of BallFilter this paper
is based upon.

5.1 Datasets and run-configurations

In this section the environment for the timed runs of BallFilter and Distributed-
BallFilter is presented. This includes the exact hardware, data sets and parameters
used for the runs.

5.1.1 Hardware configuration

The VSC-3+ cluster consists of various types of nodes with different hardware specifica-
tions [Clu22]. We will be using two node types for the purpose of empirically analysing
the performance of our implementation of DistributedBallFilter. For splitting
and outputting the tile files to the distributed file system, we will be using a single
node with a single NVIDIA Pascal GeForce GTX 1080 GPU. For processing the tile
files and outputting the reconstructed model, we will be using a number of identical
nodes, containing two Intel Xeon E5-2660v2 2.2GHz processors with 10 cores each (so
20 cores in total) and 64GiB of RAM. The reconstruction step will be run multiple
times while varying the number of nodes used in order to analyze the scaling behavior of
DistributedBallFilter.

21



5. Results and Evaluation

5.1.2 Datasets

As input point clouds for testing, two data sets have been selected, both obtained via
photogrammetry from pictures taken by drones. Both were provided from Pix4D [Pix22].
They were chosen based on their large size and real world relevance. The point clouds
are truncated to create inputs of various sizes n. In order to observe the running times
of DistributedBallFilter on scaled input, n is varied while keeping the number of
nodes p fixed.

5.1.3 Parameters

Besides the data sets, there are a number of relevant parameters we need to consider in
order execute DistributedBallFilter on the cluster and obtain meaningful running
times. Apart from the input point cloud the following parameters are necessary.

1. The parameters for BallFilter itself are the threshold for the intersection ratio δ
and the threshold for the filtering based on the bounding box diagonal tlen. These
parameters only influence the quality of the resulting 3D model and generally do
not impact performance in a significant way. For this reason, we keep them fixed
at the values generally recommended for real-world scans for both, the runs of
BallFilter and DistributedBallFilter [Ohr22].

2. Splitting the input requires three parameters, x, y and z, which denote the number
of tiles along each axis respectively. This determines the total number of tiles
s = x × y × z. Correctly choosing these parameters is vital for work distribution
and in turn has a great impact on the overall running time. The number of tiles
will also influence the number of duplicate points because each tile contains some
points that are contained in neighboring tiles as well. Given a specific point cloud,
an inappropriate choice of x, y and z may result in unbalanced tile sizes, leading
to longer running times. Although not strictly needed, information about the
distribution of points in the input point cloud is helpful for picking concrete values.
During testing, these values will generally be picked based on the number of nodes
to employ.
Furthermore, for point clouds with an uneven distribution of points there is no
regular grid subdivision that yields a balanced set of tiles. For these cases, a better
suited approach would be to use a k-d tree or an octree for splitting the input
rather than a regular grid. Implementing, testing and comparing these approaches
may be done as separate work in the future.

3. Executing DistributedBallFilter on a cluster requires the number of nodes
p to be specified. This parameter’s influence on performance is closely related to
the number of tiles. Generating less tiles than there are nodes allocated would
leave some nodes idle, waiting for the others to finish. Having more tiles allows for
better work distribution because smaller chunks can be distributed more evenly.
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However using much more tiles than nodes leads to considerable overhead by point
duplication. In our tests, we will vary this parameter to observe its impact on
the running times. Generally, using more processes should result in lower running
times.

Tiles are the unit of work that can be distributed to nodes and calculated independently
from each other. Consequently, having less tiles than there are processes would leave
some processes without work. In such a case, the same set of tiles can be processed in the
same time by less nodes. Therefore, the number of tiles s must not be smaller than the
number of processes p to avoid unnecessary idle times, thus s ≥ p. Nevertheless, more
tiles lead to more duplicate points, increasing the overall work that has to be performed,
which may in turn lead to overall higher running times.

The fastest way to process a set of (a fixed number of) s tiles is to process each tile on a
dedicated node, thus setting p = s. For sets of tiles where the number of vertices per tile
is roughly equal across all tiles i.e. balanced tile sets, this results in a good distribution of
work across all nodes. However, if the tile set is unbalanced, the nodes processing (very)
small tiles remain idle until the nodes with (very) large tiles are finished. Because nodes
remain allocated for the entire running time of the algorithm, CPU time is wasted.

In cases of imbalance, the same running time can be achieved using less nodes. Such
imbalances may be a result of poor choice of parameters (x, y, z) or simply be the
consequence of the distribution of points within the input point cloud. This case is
illustrated in 5.1b and 5.1c. In this example, a set of four tiles need to be processed.
Allocating four nodes would mean each node processes exactly one tile. As the number of
vertices within each tile vary greatly, nodes 1, 2 and 3 receive much less work compared
to node 0. After finishing the small tiles, the nodes stay allocated and have to wait for
node 0 to finish the larger tile. Scheduling the same four tiles on only two nodes leads
to the same running time, because all the small tiles can be processed by a single node
while the other node processes the large tile. Formalizing the exact conditions under
which a set of independent tasks can be processed by fewer nodes in the same time is not
within the scope of this paper.

Following from the above argument, when allocating a number of p processes, it might be
faster to split the input in more than p tiles. Having more tiles than there are processes
allows the scheduling algorithm to compensate for unbalanced tile sets, resulting in better
load balancing and (much) less idle time. By this approach, unequal point distributions
in the tiles may not necessarily lead to unbalanced work. While this improves hardware
utilization, in cases with balanced tiles it may actually increase overall running times
compared to using exactly one node per tile. In cases of unbalanced tiles however, it
might actually decrease the running time, because it allows large chunks (that otherwise
all processes would have to wait upon) to be subdivided and scheduled on multiple
processes. This case is illustrated in 5.1a and 5.1c. In this example two processes are
used. Here it is actually faster to split the input into four tiles rather than two, because
one of the two tiles would contain almost all of the points and serve as a bottleneck to
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Figure 5.1: Comparison of using s = p vs. s = 2p for unbalanced tiles: four tiles might
be processed as fast with two processes as with four. Additionally, two processes might
run faster when processing four tiles rather than two, depending on balance.

overall completion. Note that with four tiles, the total number of points to process is
larger then with two. The reason for this is the need to add duplicate points to each tile,
in order for the results to be a correct reconstruction.

Our input data sets are rather unbalanced, suggesting that in real scan data, the
occurrence of unbalanced tile sets is commonplace. This makes sense considering that
some tiles might entirely lie inside the interior of a scanned object and thus contain
no points at all. For those point clouds, using another subdivision strategy, such as a
k-d tree or octree, would be more suitable. However, the splitting step would become
more complex and harder to execute in (both, shared- and distributed- memory) parallel.
When a larger number of small tiles is used, the scheduling algorithm can still compensate
for a certain degree of imbalance within the tile sizes. It is assumed, that this strategy
still leads to good results with tile sets that are moderately unbalanced.

Generally, we could choose the number of processes (manually) depending on the concrete
set of tiles that was output by the split step. In practice, because of its low running times
sometimes it would also make sense to repeat the split step with varying parameters,
until a balanced tile set is found. For analysis however, it is important not to adapt the
parameters to specific cases or point distributions in the input data. This means we can
not choose the number of processes depending on the actual vertex counts within the
tiles.

For the balanced cases, p = s would be optimal. For the imbalanced cases we cannot
know beforehand how many processes we should choose. In figure 5.1b, only half of the
processes (p = s

2 ⇐⇒ s = 2p) is actually needed. A more extreme case could a set
of s = 8 tiles, one very large one and seven very small ones. If the seven small ones
combined are still smaller than the large one, we could process the tile set on only two
nodes without increasing the overall running time. In this case, p = 2 would be optimal
and thus p = s

4 ⇐⇒ s = 4p would hold. However, using more tiles without using more
processes is generally less desirable since it adds more duplicate points without utilizing
parallel resources.
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BallFilter Splitting Cluster

δ tlen
cells along

x-axis
cells along

y-axis
cells along

z-axis
tiles

s
nodes

p

1.35 200

2 1 1 2 1
2 2 1 4 2
2 2 2 8 4
4 2 2 16 8
4 4 2 32 16
4 4 4 64 32

Table 5.1: Parameter combinations used with each data set.

As a general rule we set s = 2p which means we use double the amount of tiles than we
have processes. As already discussed, it is not optimal for extremely balanced (s = p would
be) or imbalanced cases (s = cp with c > 1, c dependent on exact point distribution).
Nevertheless, in the average case with decent but not extreme imbalance, it leads to
good work distribution and in consequence, a high degree of hardware utilization as well
as fast running times. Depending on the point distribution, it might allow for better
running times compared to using less tiles when it leads to the subdivision of large tiles.
It allows for good speed up, while keeping the total number of duplicate points that need
to be processed relatively low.

The concrete combinations of parameters are listed in table 5.1.

5.2 Measured running times

For a closer examination we chose the eclepens data set. The exact running times for
various runs with different parameter combinations are listed in table 5.2 as well as the
absolute and relative speed up. Tsplit encompasses the time for reading the input point
cloud, splitting its vertices into tiles, duplicating vertices as necessary and writing them
to disk as separate files. This is done on a single node with a GPU. These times are the
same for all runs with the same x, y and z, because the tile files output by a single run of
the split step can be used for multiple runs of the reconstruction step. Treconstruct is the
combined time for starting p processes, calculating the tile assignment, reading the files,
executing BallFilter on each tile, merging the results and writing it to disk. This is
done on p nodes of the VSC cluster.

The running time of the split step are consistently very low. There are no significant
changes in the times for different numbers of tiles. In comparison the running times of the
reconstruction step are dominating the total running time of DistributedBallFilter.
Combined with the fact that this paper’s main focus is the reconstruction step, we will
neglect Tsplit and refrain from analysing its impact on the total running time.
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p s x y z Tsplit Treconstruct Ttotal Sabs Srel

eclepens
16 million
points

1 1 1 1 1 1.51443 90.126 91.64043 0.87 1.00
2 2 2 1 1 1.35175 48.1534 49.50515 1.60 1.85
4 4 2 2 1 1.59808 34.4655 36.06358 2.20 2.54
8 8 2 2 2 1.3445 26.3647 27.7092 2.87 3.31
16 16 4 2 2 1.2544 20.1795 21.4339 3.71 4.28
32 32 4 4 2 1.5654 16.4233 17.9887 4.41 5.09
1 2 2 1 1 1.51443 88.8745 90.22625 0.88 1.00
2 4 2 2 1 1.35175 53.7387 55.33678 1.43 1.63
4 8 2 2 2 1.59808 31.4786 32.8231 2.42 2.75
8 16 4 2 2 1.3445 22.4666 23.721 3.35 3.80
16 32 4 4 2 1.2544 14.8993 16.4647 4.82 5.48
32 64 4 4 4 1.5654 11.8065 13.47371 5.89 6.70

eclepens
32 million
points

1 2 2 1 1 1.85363 170.587 172.44063 0.85 1.00
2 4 2 2 1 1.56998 90.379 91.94898 1.59 1.88
4 8 2 2 2 1.72504 62.5874 64.31244 2.28 2.68
8 16 4 2 2 1.62856 48.895 50.52356 2.90 3.41
16 32 4 4 2 1.75069 29.9302 31.68089 4.62 5.44
32 64 4 4 4 1.84338 26.1637 28.00708 5.22 6.16
1 2 2 1 1 1.85363 168.339 169.90898 0.86 1.00
2 4 2 2 1 1.56998 96.3045 98.02954 1.49 1.73
4 8 2 2 2 1.72504 61.7569 63.38546 2.31 2.68
8 16 4 2 2 1.62856 36.3197 38.07039 3.84 4.46
16 32 4 4 2 1.75069 25.6505 27.49388 5.32 6.18
32 64 4 4 4 1.84338 23.7843 26.03393 5.62 6.53

Table 5.2: Parameter combinations and running times for eclepens

Data set Num. points n shared distributed
p = 16, s = 32

Sabs

eclepens

1 000 000 4.75855 2.628479 1.81
2 000 000 9.72407 5.268556 1.85
4 000 000 18.2101 7.887388 2.31
8 000 000 47.0571 11.432506 4.17
16 000 000 79.414 16.4647 4.82
32 000 000 146.329 27.49388 5.32
68 717 620 310.002 54.72936 5.66

matterhorn 274 890 274 1613.62 317.40777 5.08

Table 5.3: Comparison between BallFilter and DistributedBallFilter on inputs
of varying sizes
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Figure 5.2: Input point cloud (left) and reconstruction (right) of the eclepens (8 million
points) data set calculated using DistributedBallFilter with 16 processes and 32
tiles in 11.43s

5.3 Analysis of scaling behavior and speed-up

First we will discuss the behavior when scaling the input size n. Figure 5.3 and table
5.3 show the running times of the original (shared-memory) implementation of Ball-
Filter and our implementation of DistributedBallFilter for different versions of
the eclepens data set. The data set has been truncated to specific sizes (from 20 = 1
to 25 = 32 million points) to simulate growing input size. For each truncated data set
version, the times for the original (shared) implementation as well as for the distributed
implementation using 16 nodes and 32 tiles was run.

BallFilter has an asympotic running time bound of O(n log n). The asymptotic running
time bound of DistributedBallFilter is O(n log n) for the worst and O(n + n log n

p )
for the best case. This means, the distributed version is in the worst case (asymptotically)
as fast as the original algorithm and in the best case faster. The factor by which it is
faster is called absolute speedup Sabs. In reality, the absolute speedup will always be
somewhere between 1 and p, depending on the balance of the tile set which in turn is
based upon the distribution of points in the input point cloud. If p is considered constant,
the asymptotic run time complexity for DistributedBallFilter is O(n log n) for all
cases and thus matches the one of BallFilter. Therefore the only difference between
both running times lies in the coefficient (which is ignored by asymptotic complexities).

In our example, for all input sets the distributed version was faster than the shared
version. Both curves look similar, as their asymptotic running times suggests. The
absolute speed up increased with the size of the input and the running time up to a
factor of 5.32. The best possible absolute speedup would be 16, which would lead to
running times that are 1

16th of the original shared running times.

Now we will investigate how the running times change when the number of processes p is
scaled up. We executed DistributedBallFilter on the eclepens data sets with 16
and 32 million points multiple times, each time doubling the number of nodes used. As
already discussed, in order to utilize more nodes, more tiles are needed. For one series of
runs, the number of tiles was set to the same as the number of nodes (s = p), so there
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Figure 5.3: Running times of the original BallFilter vs DistributedBallFilter
with increasing input size for eclepens

would be one dedicated node per tile. For the other series, the number of tiles was twice
the number of nodes (s = 2p), so that in cases of imbalance, the scheduling algorithm
could balance out the work between the processes. The concrete timings are listed in
table 5.2 and visualized in figure 5.4.

For one node, both runs of DistributedBallFilter were slower than the original
implementation. That is to be expected because of the overhead required by the
distributed implementation (e.g. splitting the input in a single tile, initializing MPI ).
Using two or more nodes, however, significantly decreased the running times compared
to the original shared-memory implementation of BallFilter.

As the absolute and relative speedup approach a value of around 6, both the running
times stay the same even when increasing the number of nodes. The reason for this is
that for larger numbers of tiles the additional work caused by duplicate points becomes
noticeable. Eventually, it cancels out the performance gain that could be achieved by
further splitting the input and processing it in parallel on more nodes.

Another observation is the fact that apart from p = 2, the runs with s = p were
consistently slower than those using s = 2p. The reason for this becomes apparent
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Figure 5.4: Absolute running times of the original BallFilter vs DistributedBall-
Filter with one tile per process and two tiles per process respectively, run on eclepens
with 16 million (left) and 32 million (right) points.

when examining the distribution of the points within the point clouds as well as their
assignment to the nodes, visualized in figure 5.5. The running time of one process can be
estimated by its load. The process with the highest load has the longest running time
and thus determines the overall running time. For two nodes, the s = p version assigns
one tile to each node, while the s = 2p version assigns two to each node. Coincidentally,
the loads for node 0 are similar in both tile assignments, slightly higher in the s = 2p,
which also contains more duplicate points. Therefore, the s = p version was slightly
faster. The assignment for four processes reveals that with eight tiles, the highest process
load is still considerably lower than when only four tiles are used, despite the higher
number of duplicate points. Therefore, the work can be better distributed among the
nodes, resulting in an overall lower running time compared to only using four tiles. This
behaviour is also present in the runs with more processes, resulting in shorter running
times for s = 2p.

As already mentioned, using p nodes enables the fastest running times for processing s tiles.
Nevertheless, using s > p tiles on p processes leads to a lower running time compared to
using exactly p tiles because its allows for a more balanced distribution of work. Choosing
s much higher than p however leads to a larger number of duplicated points, eventually
limiting running time improvements achievable by better work distribution.

To summarize, DistributedBallFilter performed good on scaling up input size n
as well as scaling the number of nodes p. Specifically, on the original eclepens data
set, when using 16 nodes, it was shown that DistributedBallFilter was faster by
a factor of 5.66 than BallFilter. We also observed that having a higher number of
tiles, can and in many cases will decrease the overall running time because it enables
better work distribution, despite requiring more duplicated points. Figure 5.3 shows that,
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Figure 5.5: Assignment of tiles to nodes, for using s = p (left) vs. s = 2p (right) with
one (first row), two (second row) and four (third row) nodes. Blue segments represent
original points, red segments represent duplicated points.
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5.3. Analysis of scaling behavior and speed-up

DistributedBallFilter is a large improvement towards running times achievable by
linear speedup.
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CHAPTER 6
Conclusion and Future Work

Finally, in this chapter we will briefly summarize this paper’s result, as well as give a
short outlook on future work that could be done on DistributedBallFilter.

6.1 Summary

In this thesis we have presented a distributed-memory parallel algorithm for 3D surface
reconstruction called DistributedBallFilter that is based upon the BallFilter
algorithm. The idea is to split the input point cloud along a 3D grid into overlapping
chunks. For each chunk, the surface reconstruction using original BallFilter can be
run independently and thus be executed in parallel on a number of nodes. After all
chunks have been processed, the result is merged back into a single resulting 3D model.

We have shown the asymptotic run time complexity to be O(n log n) in the worst and
O(n + n log n

p ) in the best case, depending on the distribution of points within the input
point cloud. We implemented the algorithm in C++ and tested it on the VSC3+-cluster.
In our test runs, we observed that DistributedBallFilter improves the running
times considerably compared to the original BallFilter. For example, processing the
matterhorn data set consisting of roughly 275 million points with 16 nodes took only
one fifth of the time required by the original algorithm.

6.2 Future Work

While we looked at it mainly from an empirical perspective, DistributedBallFilter
can be analysed in a more formal setting. Speedup and scaling properties can be
argued and proven formally in order to evaluate our approach in a more theoretical
sense. Also, the best- and worst-case asymptotic running time complexities could be
expressed in more concrete ways, as coefficients oftentimes do matter in the practical
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6. Conclusion and Future Work

comparison of algorithms. Formally taking into account the distribution or balance of
the points within the input point cloud may yield further insights into the properties of
DistributedBallFilter.

Looking at the concrete running times of calculating the Delaunay complex and performing
the check of the δ-merged property reveals that the latter actually ran slower than the
former despite its better theoretical time complexity. We think the reason for this is the
large number of processor cores available on the VSC3+ cluster nodes. In our runs, we
utilized all 20 cores each node provides with the shared-memory parallel implementation
of the Delaunay complex from the CGAL library. Our implementation, like the original
BallFilter, uses only a single core for the δ-merged and tlen checks. Here we see the
potential of further improving the performance of DistributedBallFilter by utilizing
available cores in a shared-memory parallel implementation of this step.
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